skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yaqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points. 
    more » « less